This project has received funding from the European
Union's Horizon 2020 research and innovation
programme under grant agreement No. 899739

& s

| H2020 EU Fet-Open Project

/

Technologies for computer-assisted crowd
management

www.crowddna.eu

Call: H2020-FETOPEN-2018-2019-2020-01
Type of action: RIA
Grant agreement: 899739

WP N°2: | Modeling and Simulating High Density
Crowds

Deliverable N°2.1: | Internal version of the simulator

Task lead: | URJC

WP lead: | UL

Version N°: | 1.0

Date: | 29/04/2023

Disclaimer

This technical report is an official deliverable of the CrowdDNA project that has received funding from the European Commission's EU Horizon 2020 Research and
Innovation program under Grant Agreement No. 899739. Contents in this document reflects the views of the authors (i.e. researchers) of the project and not necessarily of
the funding source - the European Commission. The report is marked as PUBLIC RELEASE with no restriction on reproduction and distribution. Citation of this report
must include the deliverable ID number, title of the report, the CrowdDNA project and EU H2020 program.

http://www.crowddna.eu

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

/%/%

Document information

Deliverable N° and title: D2.1 — Internal Version of the Simulator
Version N°: 1.0
Task lead: URJC
WP lead: URJC
Author(s): Dan CASAS (URJC), Alexis JENSEN (Inria), He WANG
’ (UL), David WOLINSKI (ONH)
Reviewers: Julien PETTRE (Inria), Solenne FORTUN (Inria)
Submission date: 29/04/2023
Due date: 30/04/2023
Type: DEM
Dissemination level: PU
 Documenthistory .~
Date Version Author(s) Comments

12/01/2023 0.1 Solenne FORTUN (INRIA) Template creation

Dan CASAS (URJC), Alexis . .
22/04/2023 0.2 JENSEN (INRIA) First draft of Sections 1.1, 1.2, and 1.6.

He WANG (UL), Jiangbei . .
25/04/2023 0.2.1 YUE (UL) First draft of Section 1.3 and 1.4
26/04/2023 0.7 David WOLINSKI (ONHYS) | Section 1.5

Executive summary and all sections
26/04/2023 0.8 Dan CASAS (URJC) .
integrated

Julien PETTRE (INRIA), .
27/04/2023 0.9 Dan CASAS (FZJ) Internal review
28/04/2023 1.0 Solenne FORTUN (INRIA) Final layout

PUBLIC RELEASE

.

e T PN 0TETOPEN 82019202001 @ CROWDDNA
Table of Contents
TABLE OF FIGURESoiiiiiietietiitetetet ettt ettt ettt et s et e st eseese s s e s esaeseeseesesesseseessesessensenseseesensens 4
ACRONYMS AND ABBREVIATIONcutiiiiiiiiiieieieit ettt sttt sttt esesse s s enessenseneeneeseenen 5
EXECUTIVE SUMMARYooutitiitiiiieiettete sttt ete sttt e e etestessessessesessessessessessesessassessessssessessensessessssessenseseas 6
1. CROWD SIMULATORc.cotittitiieieiietett ettt ettt eae st sbe e et e s e esessesenseseeseesensenseneeseases 7
1.1. 3D Articulated Humans from 2D DiSKScccceerieiiiiiieieiieieee e 7
1.2, Collision-Aware 3D HUman CroWdS..........cccueiieieieriinieieie sttt ettt eesae e eneeeens 10
1.3, Neural SOCIAL PRYSICS ...icviiiiiiiiiicii ettt ettt ettt et eve et et eete e beesbeesveeaseebeebeebeenseenseesseeseens 11
1.4. Learn to Predict Individual Reaction to Physical INteractions............ccccceeverieriieiesienesieieneeeeeeenes 13
1.5, Microscopic Crowd BENAVIOTcccccieiiiiiiiieiiniieieiesie ettt ettt ae s eee e esesseesaenes 15
1.6. Balance RecOVETrY CONLIOL.......coiiuiiiiiiiiitinieieicieeierteteet ettt 17
1.6. 1. INErOQUCLION. c..c.tiuiiiieiieiiitictete ettt ettt ettt be sttt ee e bt e et e bt ebe b enaeneeneebeas 17
1.6.2. OVEIVIBW...uteuiiiiiieiieet ettt ettt ettt et b sttt a e bt st e e st e st e bt st e s et e st es e e b e st et eneeneeneabenaeneeneeneas 18
1.6.3. Feet MOtION SITALEZY ..e.vievieeeerirrietieiesieiteetetesseeteestesesseeseessessesseessessessesssessessesseessessassesseessessensens 19
1.6.4. LOCOMOTION SYSTEIM....uecviiiiiieiieiiitierietesteiteetetesteeseessesseeseessesseeseessessessesssessessesseessessasseeseessessenns 19
16,5, F OOt trAJECTOTY .eeuvititieeietecteeteet ettt et et ittt e et esbesreeteesbesbesteessessesseeseessassaeseessessesseessessessesseessensanseas 21
1.6.6. Full-DOdy CONIOL.....ccciiiiieiieiieiieieetieie et ettt et e bt et e esbeesbeesbeesseesseessessseessesssesssesssesssesssesssenns 22
1.6.7. Balance RECOVETY RESUILSc.cooviiiiieiiiiiiciieieeee ettt ettt ta et ta e s ta e aa e aaesaee 24
CONCLUSION. ...ttt ettt et e te st et e s e st esesse st eseese et eas et eneesees e et e s ensesees e et eesensenseseasessenseneeneeseasensensenes 27
REFERENCES ...ttt ettt ettt b et st b et a et e st e st et e st et et e st enesbentene e 28

PUBLIC RELEASE

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \&&\\\, CROWDDNA

D2.1: Internal version of the simulator =

Table of Figures

Figure 1. Components of CrowdDNA SIMUIALOT.oouiiiiiiiiiiiieee ettt 6

Figure 2. Two representative frames of 2D simulations obtained using the tool UMANS. We generated a large
collection of 2D simulations of crowds in scenarios that can potentially lead to dangerous situations, such as

bottleneck corridor OF ODSTACLES.cco.iiiuiiiiiieie ettt sttt s 7
Figure 3. Example of 2D information extracted from UMANS.........ccccoiiiiiiiininiieee e 8
Figure 4. Unity Blend Tree used to convert 2D trajectories to 3D articulated poses........cccveeveeeveeveeireevreeneenne. 8
Figure 5. A 3D crowd passing through a bottleneck scenario. Notice the 2D trajectories, originally computed
using a 2D crowd simulator, depicted as COIOT LINES.ccvirrieiierierierieriesie st ettt e sreesre e reete e e esseeneas 9
Figure 6. 2D crowd simulation from UMANS (van Toll 2020), representing a bottleneck scenario (left).
Corresponding photorealistic 3D animation (FIZNt).........c.eevvieeriiiiieiiiiieere et eere e erbesereesse e 9
Figure 7. Visualization of the collision proxies used to detect intersections between 3D humans.................. 10

Figure 8. Comparison before and after solving inter-character collisions (top). Close-up of collision between
two characters (bottom-left), and the result after resolving the contact (bottom-right)..........cceeevrvirrvrrennenee. 11

Figure 9. Two examples of NSP predictions. The future trajectories (green dots) are predicted given the past
trajectories (red dots), where the NSP model predicts three kinds of social forces at each step to calculate the
next position. We use yellow arrows, light blue arrows and black arrows to denote the goal attraction force,
collision avoidance force and environment force, respectively. Orange areas are the view fields used in the
calculation of the collision avoidance force and environment fOrce.ccccoviriereniniennenenieeeereeee e, 12

Figure 10. Based on the same visualisation scheme as NSP, we show the same predictions, but with confidence

maps about the prediction and behaviours, Shown as heatmap.c.ccceeeverciiriiiciiiiienieee e 13
Figure 11. Overview of the individual-level MOdel............cooociiieciiiiiiiiiiee e 13
Figure 12. One example of prediction on the IPM level. Our method can accurately predict the motion as well
as the IPM parameters such as the rod [ength.............ccooooiiiiiiiiiiice e 14
Figure 13. One example of prediction on the fully-body level. Left: ground-truth. Right: Prediction............. 14
Figure 14. Quantities used for an agent’s decision process when deciding where to go around a stage. 16

Figure 15. Flow of agents arriving from the North-East and gathering around a cross-shaped stage. The first
arrived agents prefer to observe the performance from the same side of the stage (left). Agents arriving later

decide to cross to the other side due to the crowd (Fight)..........ccveeiieeiieiiieiieiee e 17
Figure 16. Experiment and simulation of balance recovery after a push from a pole...........cccceevvevvenieniennnnns 17
Figure 17. Overview of our balance recovery method.coeiieiiriniiiiiininenciceeteeeee e 19
Figure 18. Step detection process when receiving a push (in reen)........c.vecveecveerieerieerieerieecreereesreesreesseesseeenes 20
Figure 19. Locomotion State MACKINE.cccuviiiuiiiiiieiii et eciee ettt eeeesiteeeaeesveeebeeebeeessaeesseeseseessseenssens 20
Figure 20. Step Computation in 2D and 3D.cccoiiiiiiiiniiiiee ettt 21
Figure 21. Two-step INVerse KiNemMatiCs.cviieririirieiereeiieese ettt st b et eaees 22
Figure 22. The Jacobian forces applied.cooiiiiiiiiiii ettt et e 23
Figure 23. Balance recovery for varied impulse, with the range of intensity and duration covered
eXperimentally dlIMILEA.cocuieiiiiiee ettt bt e bt e s bt e saeesaeesaeesaeesneas 24
Figure 24. Simulation tOrqUE COMPATISOMN.........ccververrerrerrerrerrererersresaesssesssesssesssesssesssesssesssesssesssesssesssesssenns 25

4

PUBLIC RELEASE

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

.

.

o

CROWDDNA

Acronyms and Abbreviation

CDI Crowd Dynamics International Limited
EC European Commission

EMT Executive Management team

FZJ Forschungszentrum Julich Gmbh

GA Grant Agreement

INRIA Institut National De Recherche En Informatique Et Automatique
KPIs Key Performance Indicators

ONH Onhys

PO Project Officer

UL University of Leeds

ULM Universitiat Ulm

URJC Universidad Rey Juan Carlos

WP Work-package

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

o

Executive Summary

This deliverable describes the efforts done during periods 1 and 2 in the Work Package 2 of the CrowdDNA
project towards developing a new crowd simulator algorithm tailored to model both macro and micro-level
crowd characteristics. As a reminder, the overall objective of WP2 is to deliver a new generation of crowd
simulation techniques that can predict crowd behaviors at macroscopic scales from numerical models of
physical interactions.

To this end, the consortium has worked on several key ingredients for a new crowd simulator that will be used
to model macro- and micro-level interactions. In particular, we have developed methods to create 3D synthetic
crowds from 2D trajectories and integrated several solutions to model and resolve the contact between
individuals. Additionally, we have also improved the macroscopic behavior of the crowd by learning a novel
neural social physics model that considers the influence of the environment in the crowd behavior.

Figure 1 depicts the different components of the proposed simulator, next to the CrowdDNA partner who led
each of the developments.

Physically simulated response to local interactions

SPH crowd model

Learned response|from
real/synthetic data

Synthetic image dat
for detecting
interactions

1 f:

Integration of all simulation tools

Figure 1. Components of CrowdDNA simulator.

All in all, our proposed crowd simulation agglutinates several key properties to improve existing over-
simplified solutions for crowd simulation that are unable to model micro-level features. The CrowdDNA
consortium will leverage the crowd simulator described in this document to achieve the overall goal of the
project: the development of tools for a novel of crowd motion analysis.

PUBLIC RELEASE

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \kx CROWDDNA

D2.1: Internal version of the simulator

1. Crowd Simulator

1.1. 3D Articulated Humans from 2D Disks

To tackle the grand challenge of analyzing the crowd behavior at micro-scale level, an important goal of the
project is to extend classic 2D disk-based crowd simulators to generate simulations of crowds of articulated
3D humans. The key underlaying idea behind this objective is to use these 3D crowds, and their subsequent
micro-level information (e.g., contact forces between individuals, 3D body pose information, joint positions,
limb velocities, etc.), as ground truth to train machine learning algorithms to infer microscopic information
from videos of dense crowds.

To this end, as a starting point, we use the state-of-the-art UMANS (van Toll 2020) model to generate 2D
trajectories of human crowds. UMANS is a solution that implements many crowd simulation algorithms, and
it allows to easily configure new scenes and parameterize initial conditions of the crowd such as number of
agents or location of the agents, as well as different properties of their macroscopic behavior. We exhaustively
tested out the capabilities of UMANS and looked for the optimal method and parameterization for the purposes
of CrowdDNA project.

While evaluating current 2D crowd simulation methods, we considered multiple aspects of the agents that
affect the realism of the output 3D crowd, such as distance between agents, distance to the obstacles,
trajectories, and collision-avoidance behaviors. We investigated the methods of Karamouza et a/. (Karamouzas
y Overmars 2010), Moussaid et al., PLE (Stephen J. Guy 2010), and RVO (Jur P. van den Berg 2008), and
concluded that a key parameter for our interest are the “range parameter” and “time to collision”, which control
the distance from which agents react before colliding with and obstacle or other agent. Unfortunately, we
realize that no policy in the existing methods was able to avoid collisions in a natural way: if time to collision
was increased, agents spread more, leading to highly unrealistic dense crowds when visualized as 3D
articulated agents; if time to collision was reduced, agents get easily stuck into obstacles.

Our solution is to extend the RVO (Jur P. van den Berg 2008), algorithm and separate “time to collision” into
“time to collision to agents” and “time to collision to obstacles”. This allows the modeling of dense crowds,
by setting the “time to collision to agents” very low, while avoiding collisions and getting stuck to obstacles,
by setting the “time to collision to obstacles” high. This mixture of behaviors enables RVO algorithm to
generate 2D trajectories of dense crowds in complex scenarios that resemble the macroscopic behavior of a
real human crowd.

This allowed us to generate a large collection of 2D crowds in various scenes that present some potentially
dangerous situations such as bottleneck scenarios, obstacles, and highly dense areas. Figure 2 depicts two
frames of two different sequences generated with UMANS using our enhanced version of the RVO algorithm.

e taiuagts g
+w |‘,=II ... " ¥ o
Ton e, ¥ . o
”.'.‘*“"..I: .-';: L '...4.'.,: 10

Figure 2. Two representative frames of 2D simulations obtained using the tool UMANS. We
generated a large collection of 2D simulations of crowds in scenarios that can potentially lead to
dangerous situations, such as bottleneck corridor or obstacles.

Leveraging these 2D crowd simulations, our next goal was to generate 3D photorealistic crowds. The key
underlaying idea is to animate 3D characters such that they follow the 2D trajectories computed with the 2D
crowd simulator. This requires synthesizing articulated 3D humans that move in a natural way while following
the computes trajectories. To ensure a realistic output, we need to guarantee that the locomotion and
appearance of the 3D humans is natural.

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

/%/%

To the end, we built a novel Unity solution that is able to import UMANS generated 2D crowd trajectories and
generate the corresponding 3D crowd animation. As a basic 3D human, we use the popular model SMPL
(Loper 2015) which provides a parametric model for humans. SMPL is controlled by both shape and pose
parameters, which allows to synthesize any human any pose. To fulfill such 2D to 3D task, we first have to
figure out what information of the 3D crowd was important to export from UMANS, and how to import it into
Unity. To encapsulate all this information, we created the file format depicted in Figure 3, which consists in
the (x,y) position (2" and 3™ columns) of an agent at each time step (1% column). Additionally, we also export
information about time to collision to other agents and obstacles (last two columns).

0.1, -10.6775488, -5.1308%28, 1.0, -3.52209e-08, 0.613845
0.2, -10.6627175, -5.1300966, 1.0, -5.90995e-08, 0.431435
0.3, -10.6471052, -5.1292313, 1.0, -7.59911e-08, 0.528974
0.4, -10.6307963, -5.1282872, 1.0, -8.83025e-08, 0.479376
0.5, -10.6138438, -5.1272533, 1.0, -9.74723e-08, 0.431041

Figure 3. Example of 2D information extracted from UMANS.

Using the file format from Figure 3, we are able to load 2D trajectories on a Unity solution. The
remaining challenge to be solved is how to animate a SMPL (Loper 2015) human body model such
that it follows the path while performing a realistic animation. We propose to use the Unity built-in
solution Blend Tree, depicted in Figure 4, which is typically used to map user input (e.g., keyboard or
game pad controller) to character motion, for example, when the user press the up bottom the
character jumps while walking.

ype 2D Freeform Directional

Figure 4. Unity Blend Tree used to convert 2D trajectories to 3D articulated poses.

Our idea is to make a slightly different use of Blend Tree functionality and use it to map 2D trajectories to 3D
motions. More specifically, we pick 5 motions from a motion repository (idle, walk forward, run forward, turn
right, turn left) and set up a Blend Tree that maps 2D velocities to a mixture of these motions. To compute 2D
velocities, we simply apply central finite differences to the 2D position at times #-1 and #+1. In Figure 5 we
visualize a set of 2D trajectories of a bottleneck scene loaded into our Unity 3D project, each trajectory colored
using a distinct color, and the corresponding 3D humans walking along such paths.

PUBLIC RELEASE

B B i 2018-2019-2020- N\
GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \x&& CROWDDNA

D2.1: Internal version of the simulator

/)

Figure 5. A 3D crowd passing through a bottleneck scenario. Notice the 2D trajectories,
originally computed using a 2D crowd simulator, depicted as color lines.

When using Blend Trees to lift 2D trajectories to 3D humans, we have to pay special attention to two sources
of potential issues: foot sliding, which is caused when mapping a locomotion animation to a faster velocity;
and inter-character collisions, which is caused by locating the 2D disks to close to each other.

We address the first challenge by computing the velocity of the hip in the base waking motion that we used in
our Blend Tree, and then interpolating the corresponding motion such that it matches the target velocity of our
input UMANS file. This ensures that the displacement produced by the locomotion cycle of the basic motion
matches the target displacement in the 2D trajectory at this particular time stamp.

To address the second challenge, inter-character collisions, we run an exhaustive search of the optimal “disk
size” in the 2D crowd simulator such that the subsequent 3D humans do not interpenetrate. However, we could
not find an ideal configuration: if the disk size is set too big, the distance between 3D characters is too large to
perceive the crowd as “dense crowd”; if the disk size is set too small, the 3D characters interpenetrate each
other in dense situations. Hence, we opt for a different approach and propose to solve the inter-human
collisions using a second step, described in Section 1.2, where we described a physics-based solution to resolve
the collisions.

All in all, at the end of this step we have successfully generated animations of 3D crowds from 2D disk
trajectories. This is depicted in Figure 6, where a side-by-side of a 2D crowd and the corresponding 3D crowd
is visualized. Next, we discuss how we resolved the residual collisions between the 3D characters.

Figure 6. 2D crowd simulation from UMANS (van Toll 2020), representing a bottleneck scenario
(left). Corresponding photorealistic 3D animation (right).

PUBLIC RELEASE

GA No. 899739 — C dDNA — H2020-FETOPEN-2018-2019-2020-01 \\\
0 row &\K& CROWDDNA

D2.1: Internal version of the simulator

1.2. Collision-Aware 3D Human Crowds

To synthesize realistic 3D crowds, we do not only need to model the macroscopic behavior (i.e., the overall
motion of the crowd), but also a pay attention to microscopic actions between individuals that are in close
contact. More specifically, we are interested in adding collision awareness at the individual level of the
simulation, enforcing that the 3D body of each articulated character does not intersect with others.

Collision detection and handling is generally a hard problem in Computer Graphics, and robust solutions for
deformable objects usually require expensive runtime computational costs, which does not scale well in scenes
of dozens of individuals, each of them represented as a mesh with thousands of vertices. Hence, in order to
provide collision-awareness to our 3D crowd simulator, we opt for approximating the character volume with
a set of coarse volumetric proxies which can be used to very efficiently detect collision with other points
proxies in the scenes.

Our formulation works as follows: we first approximate each character volume with a single cuboid, and check
if it is overlapping with the other cuboids of the scene using the well-known axis-aligned bounding boxes
(AABB) algorithm. For those pairs of cuboids that are in contact, we check for collisions for each pair of their
corresponding volumetric proxies. Since these proxies are modelled with an analytic expression, checking for
proxy-to-proxy intersections is a very fast computation.

To resolve the detected collisions, we formulate an articulated rigid-body simulation using as a soft constraint
the underlaying locomotion and as a hard constraint the restrictions due to collisions detected initially. We
solve the resulting system of system of equations using Newton methods, leading to a set of pose parameter
per character that fulfill the contact constraints while maintaining the overall motion of the crowd.

Figure 7 presents a visualization of 3 articulated characters and their corresponding volumetric proxies. Figure
8 showcases a 3D crowd animation going through a bottleneck scenario, before and after resolving the
collisions. As it can be seen, without introducing our formulation for collision awareness, the agents suffer
from unrealistic intersections (notice how the zoom-in characters overlap each other). After adding collision
awareness, the geometry of the characters does not overlap, producing realistic crowd effects such as pushing.

Figure 7. Visualization of the collision proxies used to detect intersections between 3D humans.

PUBLIC RELEASE

B B i 2018-2019-2020- N\
GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \X\& CROWDDNA

D2.1: Internal version of the simulator

Figure 8. Comparison before and after solving inter-character collisions (top). Close-up of collision between
two characters (bottom-left), and the result after resolving the contact (bottom-right)

1.3. Neural Social Physics

One key topic in crowd simulation is the realism of pedestrian behaviors. Achieving high fidelity in low-level
behaviors such as steering is crucial for CrowdDNA as well as in general crowd research. Existing approaches
generally fall into model-based and model-free methods. Early model-based methods tend to be empirical or
rule-based methods derived via the first-principles approach: summarizing observations into rules and
deterministic systems based on fundamental assumptions on human motion. In such a perspective, social
interactions can be modeled as forces in a particle system or an optimization problem, and individuals can be
influenced by affective states. Later, data-driven model-based methods were introduced, in which the model
behavior is still dominated by the assumptions on the dynamics, e.g. a linear dynamical system, but retains
sufficient flexibility so that the model can be adjusted to fit observations. More recently, model-free methods
based on deep learning have also been explored, and these demonstrate surprising trajectory prediction
capability.

Empirical or rule-based methods possess good explainability because they are formed as explicit geometric
optimization or ordinary/partial differentiable equations where specific terms correspond to certain behaviors.
Therefore, they have been used for not only prediction but also analysis and simulation. However, they are
less effective in data fitting with respect to noise and are therefore unable to predict accurately, even when the
model is calibrated on data. Data-driven model-based methods (e.g., statistical machine learning) improve the
ability of data fitting but are restricted by the specific statistical models employed which have limited capacities
to learn from large amounts of data. Finally, deep learning approaches excel at data fitting. They can learn
from large datasets, but lack explainability and therefore have been mainly used for prediction rather than
analysis and simulation.

Jiangbei Yue and He Wang proposed a new method combining the model-based and model-free approaches
to learn the motion of pedestrians and the influence of the environment (e.g. obstacles) onto individuals, which
is crucial in crowd management. In this research direction, the main aim is to learn explainable pedestrian
behaviors from data. As a result, we proposed two novel human trajectory prediction methods considering the
environment and finished two papers.

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

o

The first paper is “Human Trajectory Prediction via Neural Social Physics”, where we proposed the Neural
Social Physics (NSP) model. This paper has been published at The European Conference on Computer Vision
(ECCV 2022). NSP can explain pedestrian behaviors and retain good data-fitting capabilities by incorporating
explicit social force models and deep learning. Based on exhaustive evaluation, Our NSP outperforms the
state-of-the-art methods in standard trajectory prediction tasks on many public datasets and metrics. In
addition, NSP possesses the ability to generalize to unseen scenarios with higher densities where NSP can
predict more plausible motions than pure black-box deep learning methods. Our NSP not only performs well
in prediction accuracy, but also gives explanations of corresponding predictions, which is key to understanding
human trajectories, shown in the Figure 9.

Figure 9. Two examples of NSP predictions. The future trajectories (green dots) are predicted given the past
trajectories (red dots), where the NSP model predicts three kinds of social forces at each step to calculate the
next position. We use yellow arrows, light blue arrows and black arrows to denote the goal attraction force,
collision avoidance force and environment force, respectively. Orange areas are the view fields used in the
calculation of the collision avoidance force and environment force.

In Figure 9, NSP can also provide plausible explanations of the predicted motion, by estimating the ‘forces’
exerted on a specific person. Figure 9 (a) shows that a person moves upwards instead of moving to his goal
directly. This can be explained by the influence of the goal attraction force and the collision avoidance force
ensuring that the agent can avoid other pedestrians (blue dots). Similar explanations can be seen in Figure 9
(b). The goal attraction force drives the agent to his goal, while other two forces make other pedestrians and
the environment repel the agent.

The second paper is “Human Trajectory Forecasting with Explainable Behavioral Uncertainty”, where we
proposed the Bayesian Neural Social Physics (BNSP) model explicitly considering explainable aleatoric and
epistemic uncertainty. This paper is the extension of NSP and is going to be submitted to a journal. While
enjoying all the advantages of NSP, e.g. high prediction accuracy, explainability of behaviours, etc., BNSP
further enhances NSP by providing a confidence analysis for the prediction and explanation.

PUBLIC RELEASE

B B i 2018-2019-2020- N\
GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 Q\\\&& CROWDDNA

D2.1: Internal version of the simulator

Figure 10. Based on the same visualisation scheme as NSP, we show the same predictions, but with
confidence maps about the prediction and behaviours, shown as heatmap.

Figure 10 shows the predictions for the same two people in Figure 9. BNSP predicts the distributions (shown
as heatmap) of these forces each step to calculate the next position. These heatmaps show the confidence of
the estimated social forces in space and time, which can be also interpreted as the behavioral uncertainty of
the pedestrians. BNSP possesses better explainability that NSP by further analysing the indeterminacy of the
future trajectories. We can use the additional information brought by BNSP on confidence of these social
forces to understand and analyse the motion of crowds, which is crucial in crowd management.

1.4. Learn to Predict Individual Reaction to Physical Interactions

Physical interactions in high-density crowds are ubiquitous. Being able to accurately predict reactions to
physical interactions such as pushing and nudging is vital for assessing any potential physical danger, e.g.
possible falling of individuals or collapse of people in crowds.

Based on the data capture in WP1, we learn realistic reaction motions via a new class of scalable models that
combines an explicit physics model with deep learning. While the physics model, which is an Inverted
Pendulum Model (IPM), is fast and scalable to capture the general motion trend, the deep learning component
provides strong learning capacity to predict full-body motions.

_F .
""" AS;=S¢ - S¢—1=NN(q¢, Ge-1)

:________________________I
|
So S1 Stinal ! iapping oIk !

|
l I ASl TASfinal | :
| |
| == Ti
- (‘ Y qe = [X¢, 0¢]"]
Forward Prediction | |
- ——see s — | BN e Wil S R e Ml SEeiEE R e El

a1

do innal
0 = {Parameters of the IPM}

@ = {Parameters of Neural Networks}

Figure 11. Overview of the individual-level model.

We show the overview of the model on the individual level in Figure 11. Given the full-body pose of the start
frame S, and the external force F, we map the full-body pose to the IPM-level pose and make the forward
prediction on the IPM level through the IPM engine and the predicted generalized force from neural networks.
Then, we predict AS=S-S;; through neural networks from current IPM state and last IPM state (q; and q.;) to

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

/K/%

compute the full-body pose at each step. Finally, we optimize all parameters (0 and ¢) via our loss function
between the predicted motion and their ground truth.

We realised the IPM engine in 2D and 3D by deriving the motion equation from Euler-Lagrange equations to
model the forward motion simulation. We built a visualisation tool for the IPM motion for evaluation. In
addition, the 3D IPM engine has the ability to map the full-body pose to the corresponding IPM state. Based
on the 3D IPM engine, we realize the individual-level model by exploiting a recurrent neural network to predict
the generalized forces and anther network to predict the full-body poses.

Currently, we pre-processed raw data captured by FZJ for training and testing our model. The raw data include
excessively redundant information and need to manually cropped and labeled. We first visually identify and
crop the motion segment that is mostly relevant to physical interaction between people. We define the start
frame as the first frame being exerted forces and define the end frame as the frame where the agent recovers
the balance. The refined raw data are then fed into a IK-solver to output the BVH files to generate high-quality
smoothed motions.

For training, we have designed single-agent and across-agent regimes, where the former trains the model on
the initial period of time of a motion and the let the model to predict the rest. After obtaining initial success,
we extended the training to across-agents, i.e. non-overlapped data in training/testing from different people,
for better model generalization. Now, we have obtained good numerical and visualization results on the [PM-
level. We show some qualitative results below.

Ground s '
Truth g = s 2 . .
) s\ A
fi i
Prediction fi
L]
L]

Ll i s
it T 2

Figure 12. One example of prediction on the IPM level. Our method can accurately predict the motion as
well as the IPM parameters such as the rod length.

Figure 13. One example of prediction on the fully-body level. Left: ground-truth. Right: Prediction.

PUBLIC RELEASE

p RC Q " OW » » ; \\‘
GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \%\\\K& CROWDDNA

D2.1: Internal version of the simulator

1.5. Microscopic Crowd Behavior

Tests, demos, and validation efforts will be difficult to showcase on simplistic scenarios. By simplistic
scenarios, we mean crowds of people simply standing in an open environment. The issue will be that such
scenarios, while possibly adequate for basic shockwave propagation demonstrations, will be very difficult to
compare against actual crowds, moving and gathering within, for instance, a festival.

The festival example is here quite important, as thus far, the data that was successfully captured as part of the
project only concerns this type of venue. Festivals, which are therefore our current target demonstration
environment, present two main properties: (1) they often consist of more than one performance stage and (2)
the geometry of the stages themselves can vary greatly. As a consequence of these properties, a user intent on
configuring such events will face the major issue of determining the simulated agents' destinations. This is
something that is entirely absent in an open environment, where the user can simply "pop" agents somewhere
in the middle, and then direct them towards a common goal in order to build up density. In the case of a festival
on the other hand, agents need to correctly spread around a stage, independently of its geometry.

This task of gathering around a stage is, in fact, not only harder than it appears, but also necessarily performed
automatically. The obvious, low effort means of achieving it, is to "pop" the agents in roughly equal amounts
around the stage, and then direct them to converge towards said stage, closest-distance style. It could be
discussed here, if such a method does or does not inject bias as to the final spatial distribution of the agents.
But the main problem that can be observed here, is that such a configuration method breaks the moment these
agents are required to transition to another stage. Indeed, if agents are made to move to another stage, it will
be impossible to apply the same configuration strategy there, given that the agents already exist, and that they
are all in the same general location with respect to the second stage.

Unfortunately, this phenomenon of inter-stage movement is quite prevalent, as often festivals establish
performance schedules in such a way that the audience is expected to attend a performance in one location,
while another location is being prepped between performers. Such a rolling schedule therefore allows for
smooth and wait-less transitions between performances. Such was the case at the Hellfest, where such an inter-
stage movement was captured (see WP4). Given the constraints imposed on such a crowd movement (i.e.
people already part of a dense crowd, moving towards another area which might require navigating around
stage-delimiting barriers), we expect such a phenomenon to be difficult, possibly dangerous, and therefore
necessarily present in the validation simulations.

Given what we have already established about the impossibility to control, in the general case, the initial
location of a crowd before its movement towards the stage, we have updated the decision process of ONH's
simulated agents to automatically decide what their destination will be in such a situation, irrespectively of
their origin.

As a result of this effort (see Figure 14), our agents are now able to process the environment around a stage in
such a way as to estimate for each possible direction (1) where they are likely to end up if they follow this
direction (end position) and how close it will be to the stage (motivation), (2) how long they will have to travel
in order to reach this end position (locomotion effort), and (3) how difficult it will be to navigate to this end
position (navigation effort among the flow of other, surrounding agents). Additionally, note that all these
estimations are made in anticipation, and therefore concern a future state of the crowd, made probable by its
current overall movement. Finally, this choice is never final and is continuously updated as the agents move
around the stage. As a result, our agents are now able to automatically spread around a stage, and their choice
can further be controlled by the user through manipulation of the cost function's parameters.

This last aspect will require careful calibration following data collected at the various Crowd Observatories.

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

o

Low
\. navigation
\ ® ® o
High
navigatio
effort rb\.\

. Current agent . Other agents (used for navigation effort)
—>" Possible direction <> Distance to stage (motivation)
® Estimated end position “—% Distance to end position (locomotion effort)

Figure 14. Quantities used for an agent’s decision process when deciding where to go around a stage.

Figure 14 shows a still from a simulation of a cross-shaped stage positioned at the Main Stage area of the
Hellfest (although several kinds of temporary stages have been used there over the years, this particular stage
was not in place at that location during the 2022 edition, we simply reused the 3D model of this festival since
we already had it). In this simulation we made a flow of people (coming from North-East, where the entrance
of the area is) gather around the stage using the automatic mechanism described earlier. As can be observed,

the first agents to arrive prefer the areas on the same side of the stage (the larger amounts of agents on the left

of the Figure 15), whereas agents that arrive later will cross to the other side due to the amounts of agents

already present at the stage (larger flow towards the right side of the Figure 15).

PUBLIC RELEASE

CROWDDNA

W

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator Q\\\

Figure 15. Flow of agents arriving from the North-East and gathering around a cross-shaped stage. The first
arrived agents prefer to observe the performance from the same side of the stage (left). Agents arriving later
decide to cross to the other side due to the crowd (right).

1.6. Balance Recovery Control

Figure 16. Experiment and simulation of balance recovery after a push from a pole.

1.6.1. Introduction

When standing still, humans rest on their two feet in the upright position. After an external perturbation like
a push, they try to recover balance and avoid falling (see Figure 16): several motion strategies are known in
humans to achieve this [7]. On a flat ground without any possibility of grip, balance is achieved when the
center of mass (CoM) lies within the limits of the support area (the convex hull defined by the feet contact
points for an individual). However, under large perturbations, adjusting the shape of the support area by
repositioning the feet is required. This stepping strategy combines controlling feet position together with the
CoM position to get the balance condition satisfied.

Our objective is to dynamically control the movement of a character to simulate balance recovery behaviors
after external pushes by replicating the stepping strategy of humans. Our approach is to control the character’s
joints to place the projected CoM in the center of the support area, while the feet are re-positioned when
necessary to adjust the configuration of this zone according to the instantaneous movement of the CoM.

We propose a physics-based simulation that implements this control strategy on a character. We adapt a generic
walking model, enhancing its capabilities to handle external pushes and to react accordingly. Our approach is

17

PUBLIC RELEASE

p RC Q " OW » » ; \\‘
GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \%\\\K& CROWDDNA

D2.1: Internal version of the simulator

supported by experiments performed on balance recovery behaviors in humans. This study highlighted the
role of the feet in balance recovery and supported our paper in two aspects. Not only it provided us with
generalized equations describing the feet behavior, it was also used to fine tune the overall model response
with regard to experimental data. In comparison with other learning or kinematics-based approaches that rely
on example motions, our approach is generic and can consider new perturbations or new morphologies without
need for additional data.

This paper has two main contributions. The first contribution introduces a balance assessment method able to
detect the need to take a step to maintain this balance after a push. The second contribution introduces a novel
foot positioning strategy leading to a balanced state. These two contributions are combined with state-of-the-
art physics-based human simulation, then tuned and validated using the same experimental data that inspired
the control of the character.

The result is a simulator able to reproduce the behavior of a human being pushed accurately, for any push
strength or duration.

1.6.2. Overview

Figure 17 depicts the method used to simulate balance recovery, with a visual representation of the character
being pushed and a flowchart of the simulation iteration. We follow the SI metric system for forces, distances
and velocities. The legend of the figure shows the correspondence between the colors of the flowchart boxes
and the main components of the proposed method: the Locomotion System which trigger steps to recover
balance, the control of the Foot Trajectory after steps are triggered, and finally the FullBody Control of the
Center of Mass (CoM) position. Following paragraphs provide details about each of these components, starting
with the controlled character itself.

Character. The character of the simulation is a poly-articulated kinematic chain of cuboid limbs, except for a
capsule head. A total of 14 limbs are attached at 11 joints. Of all the joints, 4 hold 1 Degree of Freedom (DoF)
while the others have 3, amounting to a total of 25 DoFs. The size and mass of the limbs in the body follow
Winter’s [34] table, scaled with the character’s total height and weight.

Joint PD controller. Actuation of the motion for the character is mainly done through traditional Proportional
Derivative (PD) controllers. For every joint, a unique set of Kp and Kd gains is provided handling all the DoFs.
As seen in Figure 17 close-up 1, desired and current angles 6d and 6 are compared in a local limb aligned
basis. Taking also into account the angle velocity 8d and 8, the PD controller outputs a torque T actuating
the joint to the goal angle, according to the classic PD controller equation (1).

r=Kp.(0g — 0) +Ky.(64 - 6) (1)

Simulation iteration. At the start of the simulation iteration, the current state of the character is evaluated by
the Locomotion System (Section 1.6.4) in red. This process relies on analyzing the Center of Mass (Co M),
the Expected Center of Mass (X Co M) and the Base of Support (BoS). If the two feet are planted (i.e., the
character is not walking yet), balance is assessed. If necessary, a step is triggered putting the character in the
walking state.

Depending on this analysis, a step might be necessary, shown by the Foot Trajectory component displayed in
blue in Figure 17. This entails first computing a goal position coordinates for the swinging foot on the ground
X Zplane, here known as Xdesired(X D) and Zdesired(Z D), that will lead the character to balance.
To reach this goal, a trajectory is computed to be followed during the next simulation iterations. An overall
motion is generated for the legs using inverse kinematics, following the trajectory for the swinging foot. Every
joint in the body have default goals, some of which are overwritten by the inverse kinematics process when
walking.

Those goal angles are provided to the PD controllers, producing a torque T at every joint of the body. All the
forces applied in our method by the Full-body Control (Section 1.6.6) are shown in green. To support the
motion of the body, the Jacobian Transpose method is used to compute torques for the three type of forces,
FCoM,FVEL and FGRAYV. An example is provided in Figure 17 close-up 2, where the force of limb

18

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

/K/%

i, FGRAV, is applied through two torques T land T2 using the elbow and shoulder joints, according to
their Jacobian matrix in relation to each limb’s Center of Mass.

All those torques are then merged and integrated in the physics engine (using the Dantzig-Wolfe [9]
decomposition solver applied to Mixed Linear Complementary Problems), for a new iteration to begin. This
process can be disrupted by an external force F PU S H, directly applied to the body during the integration.

'
:
Simulation Visualisation ¢ Simulation Loop Fah
: I
Flvssics
Intrzration ..l-
Merpe ‘ _“.m..' =
Teryues e Nl
‘_J t_l YES
Jacobism Fix o e
Transpose Cantraller =< Balared =
¥ KO
Tsverse Fallow
Bt | = Fusat Lo
Angles Trajectary
Dl |
_—| |
— ampuie
| Seep Gioal

Figure 17. Overview of our balance recovery method.

1.6.3. Feet Motion Strategy

The core of this work relies on the simple premise that humans, after receiving a push, may need to take steps
to recover balance. At the core of this recovery is the contact between the character and the ground: their feet.
This section details the two parts of the model involving the placement of the feet, respectively the Locomotion
System and the Foot Trajectory.

1.6.4. Locomotion System

The first objective of the simulation is to accurately detect whether it is necessary or not for the character to
take a step. This section introduces how the current state of the simulation is analyzed, leading if necessary to
a walking state. It also explains the state machine followed by the model, to alternate stepping between legs to
recover balance.

Balance assessment using Time to Base of Support. The purpose of this work is for the character to recover
and keep balance, with or without locomotion. As such, the first notion to be clarified is the definition of
balance: what factual observation can be made to determine whether a character is balanced or not. For this
purpose, this work relies on experimental data of people being pushed.

More specifically, the step triggering condition determined in the following work, is implemented in our
model. This method relies on the analysis of the future position of the center of mass XCoM [14], and is largely
inspired by the following notion of Margin of Stability (MoS)[26], computed with the following equations:

XCoM

Lo

XCoM = XcoM + with g = \.'rg:]Tf (2)

MoS = (tmax — XCoM). —=2M_ (3)
[comll

Here, xCoM represents the CoM position,g is the gravity constant, [the length of the legs and umaxthe
closest intersection with the BoS in the direction of the XCoM from the CoM. Figure 18 illustrates these

19

PUBLIC RELEASE

.

.

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

CROWDDNA

/K/%

notions and the relationships between them. Those concepts lead to the estimation of the Time to BoS (TtBoS)
using the Distance to BoS (DtBoS), in the following equations:
M BoS :
TiBoS = ot (4)
[Ixcomll
XCoM

DitBoS = (Umax — XCoM)- =
Hxcomll

The DtBoSrepresents the distance between the CoMand the closest BoS boundary in the CoM velocity
direction, while theTtBoS is the time for the CoM to cover that distance. Based on experimental data, a
threshold T is defined for the Time to BoS, under which the character will be considered unbalanced in the
future, without possibility to recover without taking a step.

X XCOM |(

TtBoS /' [MoS

sm=b = o S

<& DB,/ (T
AT))
Wl g (P
Ml \7)

| | i

Figure 18. Step detection process when receiving a push (in green).

Leg switch state machine. Using the previously defined threshold T, the simulation is now able to detect
whether the character should be stepping or not. This allows us to define a simple state machine which is the
locomotion model of the character, illustrated in Figure 19.

TtBoS=T

ACoM.z <0

TtBoS > T g

TtBoS =T TtBaS < T
S0 : Standing
51 : Walking (right leg swing) xCoM.z = 0 : Going right
52 : Walking (left leg swing) xCoM.z < 0 : Going left

Figure 19. Locomotion state machine.

The base state of the character is the Standing (S0) state. In this state, the rigidity of the character is enough to
keep its CoM in the BoS, and steps are not needed. If the threshold T is crossed, a step is initiated. This changes
the state of the character as Walking with the right (S1) or left leg (S2) depending on the direction the CoM is
moving toward.

While stepping, the characters converge toward a balanced state. However, if at the end of the step when the
feet are both at their intended position, the character is still considered as unbalanced (the TtBoS is still under

20

PUBLIC RELEASE

GA No. 899739 — C dDNA — H2020-FETOPEN-2018-2019-2020-01 \\\
0 row &\K& CROWDDNA

D2.1: Internal version of the simulator

T), then another step is initiated. The swinging leg is switched, and the process is repeated until the character
is considered as balanced at the end of a step. Thus, it simply returns to the Standing state, where internal forces
are enough to keep balance.

1.6.5. Foot trajectory

Computation of the foot trajectory. When the character enters a Walking state, first are computed the end goal
position’s coordinates, X D and Z D, for the foot of the current swinging leg. Not only must the end position
be computed, but the StepTime the step takes to be completed is also crucial for swift yet cohesive movement.

In order to calculate those key factors, equations derived from experimental data are being used. Both the foot
end position and stepping time have been found to be tightly linked to the velocity of the CoM. Similar to the
threshold for the time to BoS, those parts of the model are anchored in observation of experimental data which
supports the simulation, leading to the following equations and parameters (see Table 1):

{‘xd- Zd] . IF"{”Prtljn'ruf +a 1 hf!f’hi'x(“hi projected (6)
StepTime = az + bE-kCuMPme,d (7)
Table 1. Experimental Parameters.
Name al a2 b2
Value 0.581 0.185 0.272

Zo |-

Figure 20. Step Computation in 2D and 3D.

In order to reach the goal position (X D,Z D) in StepTime seconds, a trajectory needs to be established that
will lead the foot to the next position, as seen in Figure 20. The problem can be divided in two parts : the
projected trajectory of the foot on the ground over time, and the foot’s height over time. The projected position
can simply be computed by linear interpolation between the original and end position, seen on the left of Figure
20. For the height, the model approximates it using a spline proportional to the step distance, resulting in a 3D
trajectory like the right part of Figure 20.

Taking into account the planned StepTime, this results in a trajectory that can be followed over time for the
stepping foot. At every simulation iteration, the goal position of the stepping foot follows the trajectory
according to the current elapsed time since the beginning of the step, leading to the goal (X D,Z D) position
in StepTime seconds.

21

PUBLIC RELEASE

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \\\\
0 row &\ik% CROWDDNA

D2.1: Internal version of the simulator

Figure 21. Two-step Inverse Kinematics

Swinging leg inverse kinematics. By default, each joint in the character’s body has a target angle of 0 for every
DoF while being subjected to gravity. When a step is underway, those goal angles are overwritten for the lower
body to be in the right position. Those angles are computed at every simulation iteration when in the Walking
state, following the trajectory previously established.

The angles are calculated using the Cycling Coordinate Descent (CCD) algorithm, as seen in Figure 21. The
first step is in the coronal plane, to compute the rotation around the X axis @stride which relies on the
single DoF of the knee to simplify the inverse kinematics to a plane. The goal in blue follows along the
trajectory, represented by the dashed line. This is shown in the second part, where by knowing the length of
the leg’s limbs and the position of the goal, the position of the knee can be deduced and the angles 6hip and
Oknee are calculated.

Standing leg inverse kinematics. To support the stepping motion, the standing leg must contribute to the
balance. The goal position of the CoM is estimated as being between the final position of the two feet when
they are projected onto the ground. The standing leg is given goal angles with the foot not moving and the
CoM in the correct position, using the same CCD method but reversed (with the end effector now being the
hips).

1.6.6. Full-body Control

Across the whole body, movement is at this point generated by the joints’ PD controllers provided with goal
angles. Those goal angles are at default 0. As such, the overall body’s angles only stem from the weight of
gravity on the limbs counteracted by the PD controllers. Down the waist, angles are redefined when stepping.
This however leaves the rest of the body in its default state, which is both inefficient and incorrect. When
pushed, every part of the body is involved in push recovery albeit at different scales. This section covers the
computation of the other applied torques across the whole body.

Set of applied torques. A total of four different types of torques can be applied in the simulation. The first is
from the PD controllers, producing torques from goal angles. The other three are gravity compensation,
velocity compensation and CoMdriving, computed using jacobian transpose. Gravity compensation
compensates the constant effort needed to resist gravity, to lower the strain on the PD controllers for finer
control. Velocity compensation’s goal is to involve the whole body to counteract the push by converging
toward zero CoM velocity. Finally, CoM driving supports the legs’ PD controller in their stepping motion by
pushing the ground-projected CoM toward the middle of the feet.

Torque computation. The method used in order to compute the torques is the jacobian transpose, a classic
control method in robotics [5]. Figure 22 illustrates the application of a force FGRAV'I at the position
C oM through two torques T1 and T2, one for the lower arm and one for the upper arm. To compute one of
those torques, the first step is to compute for the corresponding limb the jacobian transpose of its joint in
relation to the position Co M i with:

dPcom,

e (8)
‘}Hl’j mb

Jtimb =

22

PUBLIC RELEASE

GA No. 899739 — C dDNA — H2020-FETOPEN-2018-2019-2020-01 \\\
0 row &\&k\& CROWDDNA

D2.1: Internal version of the simulator

CoM _I

YF GR \\'_I/

Figure 22. The Jacobian forces applied.

Transposing this limb’s jacobian matrix, a torque can be computed for the corresponding limb’s joint that will
apply the equivalent of a force F (F GRAV'i) at the position Co M i using:

Timb = .I;f,,,b Forav, (9)

The implementation of this process and the relevant forces values to add to the system (namely the following
gravity and velocity compensation) are thoroughly explained in the paper ’Generalized Biped Walking
Control’ [8], which is the main inspiration of this work.

Gravity compensation. The first torques applied are gravity compensation. A set of forces is computed, one
for each limb of the upper body. The position of force exertion is the CoM of the limb, with the force following
the equation:

Fﬁ"”‘r‘hml- = —g.Mass)j (10)

For each force in this set, the Jacobian transpose process is repeated. The joints between the corresponding
limb and the hips have a torque computed. As such, the shoulder joint not only compensates the gravity of the
upper arm, but also the lower arm as this joint influence both limbs.

Velocity compensation. The next force applied is velocity compensation, at the CoM of the character, with the
corresponding equation:

Fygr = —ayEgL-XcoM (11)

aV E L is a dimensionless tuning parameter, to regulate the intensity of the resulting torques. This force is
only applied once at the CoM, however torques are computed for every joint between the standing foot and
the head.

CoM driving. As an addition to the previous set of forces, another force called the CoM driving contributes to
balance. It is applied the same way as velocity compensation, from the standing foot to the head, and only once
at the CoMof the character. It is calculated using:

F(_'u.“ = ‘]C'(r.\i-‘.x('u.ﬂdem,d = XCoM) (12)
aCoM is another dimensionless tuning parameter, once again regulating the final torques values. It is a
mixture of the two previous forces: it supports the PD controllers like the gravity compensation and involves
the whole body like the velocity compensation.

Force purpose and equilibrium. The three forces added to the system are expressed the same way as the PD
controllers : through torques at joints of the body. This means that at each joint, multiple torques might be
summed to get the final exerted torque. In order for this summation to work, each torque value must be
carefully tuned in order to ensure a balanced contribution of controls, through gains (K p, Kd) or tuning
parameters (aV EL,aCoM).

23

PUBLIC RELEASE

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01 \\\\
0 row &\ik% CROWDDNA

D2.1: Internal version of the simulator

1.6.7. Balance Recovery Results

After the optimisation of the simulation, several aspects of the resulting movement have been explored. First,
the balance recovery capacities of the model with regard to the external pushes’ intensities were investigated.
Second, the torques generated by the model were investigated in terms of intensity and compared to human
strength generation capabilities reported in the literature. Third, the generated motion was compared to
reference values obtained from the experimental data and processed with the CusToM motion analysis library
[23]. Specifically, step triggering, CoM trajectories and joint angles trajectories were compared in terms of
amplitude and shape. The simulation runs in real time between 100Hz and 200Hz. Each frame represents 0.005
seconds to fit the experimental data refresh rate, with 200 solver iterations per frame.

1.6.7.1. Evaluation of balance recovery

The first goal of this simulation is to mimic the balance recovery behavior, and more specifically how humans
follow stepping strategies when necessary. As such, the first qualitative metric explored in Figure 23 is the
ability of the character to recover balance after receiving pushes of varying strength and duration. By default,
we set our character to an average height and weight (1.70m and 70kg), pushed from a perpendicular angle to
the back. A push is done at every 20N (between 0 and 300 Newtons) and 0.2s (between 0 and 2 seconds), only
once due to the deterministic nature of the simulation. Note that this range of impulse goes beyond the
experimental study we based our work on, as shown in Figure 23. The blue and red areas correspond to
complete success or failures. Mixed responses designate the area in which failed test appeared for lower
intensity pushes than successes.

1.6.7.2. Torque value

The following investigation aims at checking whether the generated torques values are within the range of
human torques. The measures are made for the lower body joints, and compared with an empirical study [3].
Figure 24 illustrates our results. For each type of torque, the maximum torque (up axis) observed in humans
for an angle (right axis) and an angle velocity (bottom axis) value is represented as a surface. Each color
corresponds to the torque measured over the duration of a low (green), medium (blue) and high (red) impulse
push. The surface represents the torque generation capacities for the corresponding angle and angle velocity
values reported from Anderson et al [3].

Balance recovery success

304 - L] » x x x = » W e
- L] .\c ® X » - » v 3 w
- - 3 b x » £ » K "
504 ® L - * ® * = » ® 0
L L] L] X X x S £ X "
L] L . x X * £ x X -
- - L] L] * 3 » X i) ™ .
£ 200 L] L] - [] o » = ! o o
‘3'_-' - - L L] X » S - - -
e '.--ﬁ-.--.--.-— x] 3 L] -
Eiso{ e o @ e e le @ o o @
- s ™ ™ ™ . 1. . . ™ ™
g ™ - - - - L] L] L) L]
®wod® Evnerimental ! . . » . .
100 b L,\PLJ imental i :. = H . o
L . 143 a | L] L] L] L] -
|8 Conditions FEE NI
301 e - . . . i . = . .
s ® o o & ;»# & & & »
| IR SRR RS BT A - - . L]

025 0S80 075 100 125 150 175 200

Push duration (5]
Balance Mixed
Falls

| recovered RE‘SPDI'ISE

Figure 23. Balance recovery for varied impulse,
with the range of intensity and duration covered
experimentally delimited.

24

PUBLIC RELEASE

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01
D2.1: Internal version of the simulator

.

.

o

CROWDDNA

o G " . .

Hip extension Hip flexion

i - - o b o B
o i e e e
1 Ly Je=T =)
b
el e |
Plantar flexion Dorsiflexion

&

gy =

Knee extension Knee flexion
Figure 24. Simulation torque comparison.

1.6.7.3. Data comparison

. ":'g.l e
vz .M,:ﬁ,;h:

In this subsection, the simulation results are confronted and compared to the experimental data computed from

measured human pushes.

Step triggering

The confusion matrix Table 2 of the simulated experiment pushes allows an evaluation of the step triggering
condition used in the model. For every push perpendicular to the back of the dataset, the same push was
recreated in the simulator. The test is done on whether the simulation needs to take a step or not for the same
pushes than the original data. Positive and Negatives correspond to the simulation needing a step, while True
and False come from the experimental data needing to step. The resulting values are a sensitivity of 0.88, a

precision of 0.81, and an overall accuracy of 0.74.

Table 2. Step triggering confusion matrix of 251 pushes.

True False
Positive 163 38
Negative 22 23

PUBLIC RELEASE

25

GA No. 899739 — CrowdDNA — H2020-FETOPEN-2018-2019-2020-01

D2.1: Internal version of the simulator

/
@

CROWDDNA

CoM trajectory

Figure 25 (left) showcases a study of the CoM trajectory over time. Every push at a perpendicular angle of the
back in the original dataset (blue) is recreated in the simulation (red). Only stepping pushes are shown in this
figure. The trajectory is the projected position of the CoMon the ground over time (normalized by height and
weight for the data). Every push of the experiment is recreated in the simulation, with the color gradient

corresponding to the intensity of the same push for both set of trajectories.

The final positions in the direction of the push after stepping (by impulse) are displayed in Figure 25 (right),
for the experimental data (blue) and simulation (red). All pushes perpendicular to the back are tested, regardless

of steps in the experimental data.

oo 0s 10 15
Elapsed time (1)
Weak Impulse —————— Sprang Impailse

Simulation

LEE
[1] =
10] *I-:‘
. -e * s e : [
= on e *‘,"I"‘l
£o o opes Rl
§ o, B lo
o - o e
i ALY Ty g 0
E ° - g L
w04 t.i . e
3 . s 8 ufae o L
= eatle, o, * e . .
(¥ ." ® L . =
* 4% - ..
o5 o0 ea® sl o
o 25 w0 TS0 135 1% 17
Impulee (Ms)
@ simutation ® om

Figure 25. Final positions in the direction of the push after stepping.

PUBLIC RELEASE

26

G . 899739 — CrowdDNA — H2020- O -2018-2019-2020-01 \\\
A No 7 rowdDN H FETOPEN-2018-201 &\\K& CROWDDNA

D2.1: Internal version of the simulator

Conclusion

In this deliverable, we have described the different components of the first version of the CrowdDNA crowd
simulator, which was developed during Period 1 and Period 2 of the project. Our proposed solution is not
limited to just modeling the macroscopic behavior of a crowd, but it also models many micro-scale effects
such as 3D volumetric characters, close character interaction, balance control, as well as improvements at the
macroscopic behavior based on social and contextual cues.

This new simulator provides many key functionalities that will be essential for the upcoming parts of the
project. With the ability to model both macro and micro, we will be able to train models for macro-to-micro
crowd analysis that will enable an unprecedented control and management of dense crowds in real-time.
Leveraging the proposed model, we will generate a new richly annotated dataset of 3D crowds, with micro-
level annotations such as inter-human contact forces, limb-level actions, and individual behavior. This new
type of data will enable the training of machine learning models for crowd analysis and management, planned
for the period 3 of the project. In the final part of the project, the trained models will be deployed and tested to
a range of crowd observatories to validate the capabilities of solutions proposed along the project.

27

PUBLIC RELEASE

GA No. 899739 — C dDNA — H2020-FETOPEN-2018-2019-2020-01 \\\
0 row &\K& CROWDDNA

D2.1: Internal version of the simulator

References

Van Toll, Wouter and Grzeskowiak, Fabien and Gandia, Axel Lopez and Amirian, Javad and Berton, Florian
and Bruneau, Julien and Daniel, Beatriz Cabrero and Jovane, Alberto and Pettré, Julien. 2020.
"Generalized Microscropic Crowd Simulation using Costs in Velocity Space." ACM/SIGGRAPH
Symposium on Interactive 3D Graphics and Games.

Jur P. van den Berg, Ming C. Lin, and Dinesh Manocha. 2008. "Reciprocal Velocity Obstacles for real-time
multi-agent navigation." Proc. IEEE Int. Conf. Robotics and Automation.

Stephen J. Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming Lin, and Dinesh Manocha. 2010.
"PLEdestrians: A least-effort approach to crowd simulation." Proc. ACM SIGGRAPH/Eurographics
Symp. Computer Animation.

Karamouzas, loannis, and Mark H Overmars. 2010. "A velocity-based approach for simulating human
collision avoidance." Proc. Int. Conf. Intelligent Virtual Agents.

Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.
2015. "SMPL: A Skinned Multi-Person Linear Model." ACM Trans. Graphics.

28

PUBLIC RELEASE

