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Executive Summary
This deliverable describes the efforts done during periods 1 and 2 in the Work Package 2 of the CrowdDNAproject towards developing a new crowd simulator algorithm tailored to model both macro and micro-levelcrowd characteristics. As a reminder, the overall objective of WP2 is to deliver a new generation of crowdsimulation techniques that can predict crowd behaviors at macroscopic scales from numerical models ofphysical interactions.
To this end, the consortium has worked on several key ingredients for a new crowd simulator that will be usedto model macro- and micro-level interactions. In particular, we have developed methods to create 3D syntheticcrowds from 2D trajectories and integrated several solutions to model and resolve the contact betweenindividuals. Additionally, we have also improved the macroscopic behavior of the crowd by learning a novelneural social physics model that considers the influence of the environment in the crowd behavior.
Figure 1 depicts the different components of the proposed simulator, next to the CrowdDNA partner who ledeach of the developments.

Figure 1. Components of CrowdDNA simulator.

All in all, our proposed crowd simulation agglutinates several key properties to improve existing over-simplified solutions for crowd simulation that are unable to model micro-level features. The CrowdDNAconsortium will leverage the crowd simulator described in this document to achieve the overall goal of theproject: the development of tools for a novel of crowd motion analysis.
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1. Crowd Simulator
1.1. 3D Articulated Humans from 2D Disks

To tackle the grand challenge of analyzing the crowd behavior at micro-scale level, an important goal of theproject is to extend classic 2D disk-based crowd simulators to generate simulations of crowds of articulated3D humans. The key underlaying idea behind this objective is to use these 3D crowds, and their subsequentmicro-level information (e.g., contact forces between individuals, 3D body pose information, joint positions,limb velocities, etc.), as ground truth to train machine learning algorithms to infer microscopic informationfrom videos of dense crowds.
To this end, as a starting point, we use the state-of-the-art UMANS (van Toll 2020) model to generate 2Dtrajectories of human crowds. UMANS is a solution that implements many crowd simulation algorithms, andit allows to easily configure new scenes and parameterize initial conditions of the crowd such as number ofagents or location of the agents, as well as different properties of their macroscopic behavior. We exhaustivelytested out the capabilities of UMANS and looked for the optimal method and parameterization for the purposesof CrowdDNA project.
While evaluating current 2D crowd simulation methods, we considered multiple aspects of the agents thataffect the realism of the output 3D crowd, such as distance between agents, distance to the obstacles,trajectories, and collision-avoidance behaviors. We investigated the methods of Karamouza et al. (Karamouzasy Overmars 2010), Moussaid et al., PLE (Stephen J. Guy 2010), and RVO (Jur P. van den Berg 2008), andconcluded that a key parameter for our interest are the “range parameter” and “time to collision”, which controlthe distance from which agents react before colliding with and obstacle or other agent. Unfortunately, werealize that no policy in the existing methods was able to avoid collisions in a natural way: if time to collisionwas increased, agents spread more, leading to highly unrealistic dense crowds when visualized as 3Darticulated agents; if time to collision was reduced, agents get easily stuck into obstacles.
Our solution is to extend the RVO (Jur P. van den Berg 2008), algorithm and separate “time to collision” into“time to collision to agents” and “time to collision to obstacles”. This allows the modeling of dense crowds,by setting the “time to collision to agents” very low, while avoiding collisions and getting stuck to obstacles,by setting the “time to collision to obstacles” high. This mixture of behaviors enables RVO algorithm togenerate 2D trajectories of dense crowds in complex scenarios that resemble the macroscopic behavior of areal human crowd.
This allowed us to generate a large collection of 2D crowds in various scenes that present some potentiallydangerous situations such as bottleneck scenarios, obstacles, and highly dense areas. Figure 2 depicts twoframes of two different sequences generated with UMANS using our enhanced version of the RVO algorithm.

Figure 2. Two representative frames of 2D simulations obtained using the tool UMANS. Wegenerated a large collection of 2D simulations of crowds in scenarios that can potentially lead todangerous situations, such as bottleneck corridor or obstacles.
Leveraging these 2D crowd simulations, our next goal was to generate 3D photorealistic crowds. The keyunderlaying idea is to animate 3D characters such that they follow the 2D trajectories computed with the 2Dcrowd simulator. This requires synthesizing articulated 3D humans that move in a natural way while followingthe computes trajectories. To ensure a realistic output, we need to guarantee that the locomotion andappearance of the 3D humans is natural.
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To the end, we built a novel Unity solution that is able to import UMANS generated 2D crowd trajectories andgenerate the corresponding 3D crowd animation. As a basic 3D human, we use the popular model SMPL(Loper 2015) which provides a parametric model for humans. SMPL is controlled by both shape and poseparameters, which allows to synthesize any human any pose. To fulfill such 2D to 3D task, we first have tofigure out what information of the 3D crowd was important to export from UMANS, and how to import it intoUnity. To encapsulate all this information, we created the file format depicted in Figure 3, which consists inthe (x,y) position (2nd and 3rd columns) of an agent at each time step (1st column). Additionally, we also exportinformation about time to collision to other agents and obstacles (last two columns).

0.1, -10.6775488, -5.1308928, 1.0, -3.52209e-08, 0.6138450.2, -10.6627175, -5.1300966, 1.0, -5.90995e-08, 0.4314350.3, -10.6471052, -5.1292313, 1.0, -7.59911e-08, 0.5289740.4, -10.6307963, -5.1282872, 1.0, -8.83025e-08, 0.4793760.5, -10.6138438, -5.1272533, 1.0, -9.74723e-08, 0.431041
Figure 3. Example of 2D information extracted from UMANS.

Using the file format from Figure 3, we are able to load 2D trajectories on a Unity solution. Theremaining challenge to be solved is how to animate a SMPL (Loper 2015) human body model suchthat it follows the path while performing a realistic animation. We propose to use the Unity built-insolution Blend Tree, depicted in Figure 4, which is typically used to map user input (e.g., keyboard orgame pad controller) to character motion, for example, when the user press the up bottom thecharacter jumps while walking.

Figure 4. Unity Blend Tree used to convert 2D trajectories to 3D articulated poses.
Our idea is to make a slightly different use of Blend Tree functionality and use it to map 2D trajectories to 3Dmotions. More specifically, we pick 5 motions from a motion repository (idle, walk forward, run forward, turnright, turn left) and set up a Blend Tree that maps 2D velocities to a mixture of these motions. To compute 2Dvelocities, we simply apply central finite differences to the 2D position at times t-1 and t+1. In Figure 5 wevisualize a set of 2D trajectories of a bottleneck scene loaded into our Unity 3D project, each trajectory coloredusing a distinct color, and the corresponding 3D humans walking along such paths.



9

GA No. 899739 – CrowdDNA – H2020-FETOPEN-2018-2019-2020-01D2.1: Internal version of the simulator

PUBLIC RELEASE

Figure 5. A 3D crowd passing through a bottleneck scenario. Notice the 2D trajectories,originally computed using a 2D crowd simulator, depicted as color lines.
When using Blend Trees to lift 2D trajectories to 3D humans, we have to pay special attention to two sourcesof potential issues: foot sliding, which is caused when mapping a locomotion animation to a faster velocity;and inter-character collisions, which is caused by locating the 2D disks to close to each other.
We address the first challenge by computing the velocity of the hip in the base waking motion that we used inour Blend Tree, and then interpolating the corresponding motion such that it matches the target velocity of ourinput UMANS file. This ensures that the displacement produced by the locomotion cycle of the basic motionmatches the target displacement in the 2D trajectory at this particular time stamp.
To address the second challenge, inter-character collisions, we run an exhaustive search of the optimal “disksize” in the 2D crowd simulator such that the subsequent 3D humans do not interpenetrate. However, we couldnot find an ideal configuration: if the disk size is set too big, the distance between 3D characters is too large toperceive the crowd as “dense crowd”; if the disk size is set too small, the 3D characters interpenetrate eachother in dense situations. Hence, we opt for a different approach and propose to solve the inter-humancollisions using a second step, described in Section 1.2, where we described a physics-based solution to resolvethe collisions.
All in all, at the end of this step we have successfully generated animations of 3D crowds from 2D disktrajectories. This is depicted in Figure 6, where a side-by-side of a 2D crowd and the corresponding 3D crowdis visualized. Next, we discuss how we resolved the residual collisions between the 3D characters.

Figure 6. 2D crowd simulation from UMANS (van Toll 2020), representing a bottleneck scenario(left). Corresponding photorealistic 3D animation (right).
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1.2. Collision-Aware 3D Human Crowds
To synthesize realistic 3D crowds, we do not only need to model the macroscopic behavior (i.e., the overallmotion of the crowd), but also a pay attention to microscopic actions between individuals that are in closecontact. More specifically, we are interested in adding collision awareness at the individual level of thesimulation, enforcing that the 3D body of each articulated character does not intersect with others.
Collision detection and handling is generally a hard problem in Computer Graphics, and robust solutions fordeformable objects usually require expensive runtime computational costs, which does not scale well in scenesof dozens of individuals, each of them represented as a mesh with thousands of vertices. Hence, in order toprovide collision-awareness to our 3D crowd simulator, we opt for approximating the character volume witha set of coarse volumetric proxies which can be used to very efficiently detect collision with other pointsproxies in the scenes.
Our formulation works as follows: we first approximate each character volume with a single cuboid, and checkif it is overlapping with the other cuboids of the scene using the well-known axis-aligned bounding boxes(AABB) algorithm. For those pairs of cuboids that are in contact, we check for collisions for each pair of theircorresponding volumetric proxies. Since these proxies are modelled with an analytic expression, checking forproxy-to-proxy intersections is a very fast computation.
To resolve the detected collisions, we formulate an articulated rigid-body simulation using as a soft constraintthe underlaying locomotion and as a hard constraint the restrictions due to collisions detected initially. Wesolve the resulting system of system of equations using Newton methods, leading to a set of pose parameterper character that fulfill the contact constraints while maintaining the overall motion of the crowd.
Figure 7 presents a visualization of 3 articulated characters and their corresponding volumetric proxies. Figure8 showcases a 3D crowd animation going through a bottleneck scenario, before and after resolving thecollisions. As it can be seen, without introducing our formulation for collision awareness, the agents sufferfrom unrealistic intersections (notice how the zoom-in characters overlap each other). After adding collisionawareness, the geometry of the characters does not overlap, producing realistic crowd effects such as pushing.

Figure 7. Visualization of the collision proxies used to detect intersections between 3D humans.
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Figure 8. Comparison before and after solving inter-character collisions (top). Close-up of collision betweentwo characters (bottom-left), and the result after resolving the contact (bottom-right)
1.3. Neural Social Physics

One key topic in crowd simulation is the realism of pedestrian behaviors. Achieving high fidelity in low-levelbehaviors such as steering is crucial for CrowdDNA as well as in general crowd research. Existing approachesgenerally fall into model-based and model-free methods. Early model-based methods tend to be empirical orrule-based methods derived via the first-principles approach: summarizing observations into rules anddeterministic systems based on fundamental assumptions on human motion. In such a perspective, socialinteractions can be modeled as forces in a particle system or an optimization problem, and individuals can beinfluenced by affective states. Later, data-driven model-based methods were introduced, in which the modelbehavior is still dominated by the assumptions on the dynamics, e.g. a linear dynamical system, but retainssufficient flexibility so that the model can be adjusted to fit observations. More recently, model-free methodsbased on deep learning have also been explored, and these demonstrate surprising trajectory predictioncapability.
Empirical or rule-based methods possess good explainability because they are formed as explicit geometricoptimization or ordinary/partial differentiable equations where specific terms correspond to certain behaviors.Therefore, they have been used for not only prediction but also analysis and simulation. However, they areless effective in data fitting with respect to noise and are therefore unable to predict accurately, even when themodel is calibrated on data. Data-driven model-based methods (e.g., statistical machine learning) improve theability of data fitting but are restricted by the specific statistical models employed which have limited capacitiesto learn from large amounts of data. Finally, deep learning approaches excel at data fitting. They can learnfrom large datasets, but lack explainability and therefore have been mainly used for prediction rather thananalysis and simulation.
Jiangbei Yue and He Wang proposed a new method combining the model-based and model-free approachesto learn the motion of pedestrians and the influence of the environment (e.g. obstacles) onto individuals, whichis crucial in crowd management. In this research direction, the main aim is to learn explainable pedestrianbehaviors from data. As a result, we proposed two novel human trajectory prediction methods considering theenvironment and finished two papers.
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The first paper is “Human Trajectory Prediction via Neural Social Physics”, where we proposed the NeuralSocial Physics (NSP) model. This paper has been published at The European Conference on Computer Vision(ECCV 2022). NSP can explain pedestrian behaviors and retain good data-fitting capabilities by incorporatingexplicit social force models and deep learning. Based on exhaustive evaluation, Our NSP outperforms thestate-of-the-art methods in standard trajectory prediction tasks on many public datasets and metrics. Inaddition, NSP possesses the ability to generalize to unseen scenarios with higher densities where NSP canpredict more plausible motions than pure black-box deep learning methods. Our NSP not only performs wellin prediction accuracy, but also gives explanations of corresponding predictions, which is key to understandinghuman trajectories, shown in the Figure 9.

Figure 9. Two examples of NSP predictions. The future trajectories (green dots) are predicted given the pasttrajectories (red dots), where the NSP model predicts three kinds of social forces at each step to calculate thenext position. We use yellow arrows, light blue arrows and black arrows to denote the goal attraction force,collision avoidance force and environment force, respectively. Orange areas are the view fields used in thecalculation of the collision avoidance force and environment force.
In Figure 9, NSP can also provide plausible explanations of the predicted motion, by estimating the ‘forces’exerted on a specific person. Figure 9 (a) shows that a person moves upwards instead of moving to his goaldirectly. This can be explained by the influence of the goal attraction force and the collision avoidance forceensuring that the agent can avoid other pedestrians (blue dots). Similar explanations can be seen in Figure 9(b). The goal attraction force drives the agent to his goal, while other two forces make other pedestrians andthe environment repel the agent.
The second paper is “Human Trajectory Forecasting with Explainable Behavioral Uncertainty”, where weproposed the Bayesian Neural Social Physics (BNSP) model explicitly considering explainable aleatoric andepistemic uncertainty. This paper is the extension of NSP and is going to be submitted to a journal. Whileenjoying all the advantages of NSP, e.g. high prediction accuracy, explainability of behaviours, etc., BNSPfurther enhances NSP by providing a confidence analysis for the prediction and explanation.
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Figure 10. Based on the same visualisation scheme as NSP, we show the same predictions, but withconfidence maps about the prediction and behaviours, shown as heatmap.
Figure 10 shows the predictions for the same two people in Figure 9. BNSP predicts the distributions (shownas heatmap) of these forces each step to calculate the next position. These heatmaps show the confidence ofthe estimated social forces in space and time, which can be also interpreted as the behavioral uncertainty ofthe pedestrians. BNSP possesses better explainability that NSP by further analysing the indeterminacy of thefuture trajectories. We can use the additional information brought by BNSP on confidence of these socialforces to understand and analyse the motion of crowds, which is crucial in crowd management.

1.4. Learn to Predict Individual Reaction to Physical Interactions
Physical interactions in high-density crowds are ubiquitous. Being able to accurately predict reactions tophysical interactions such as pushing and nudging is vital for assessing any potential physical danger, e.g.possible falling of individuals or collapse of people in crowds.
Based on the data capture in WP1, we learn realistic reaction motions via a new class of scalable models thatcombines an explicit physics model with deep learning. While the physics model, which is an InvertedPendulum Model (IPM), is fast and scalable to capture the general motion trend, the deep learning componentprovides strong learning capacity to predict full-body motions.

Figure 11. Overview of the individual-level model.
We show the overview of the model on the individual level in Figure 11. Given the full-body pose of the startframe S0 and the external force F, we map the full-body pose to the IPM-level pose and make the forwardprediction on the IPM level through the IPM engine and the predicted generalized force from neural networks.Then, we predict ∆St=St-St-1 through neural networks from current IPM state and last IPM state (qt and qt-1) to
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compute the full-body pose at each step. Finally, we optimize all parameters (θ and φ) via our loss functionbetween the predicted motion and their ground truth.
We realised the IPM engine in 2D and 3D by deriving the motion equation from Euler-Lagrange equations tomodel the forward motion simulation. We built a visualisation tool for the IPM motion for evaluation. Inaddition, the 3D IPM engine has the ability to map the full-body pose to the corresponding IPM state. Basedon the 3D IPM engine, we realize the individual-level model by exploiting a recurrent neural network to predictthe generalized forces and anther network to predict the full-body poses.
Currently, we pre-processed raw data captured by FZJ for training and testing our model. The raw data includeexcessively redundant information and need to manually cropped and labeled. We first visually identify andcrop the motion segment that is mostly relevant to physical interaction between people. We define the startframe as the first frame being exerted forces and define the end frame as the frame where the agent recoversthe balance. The refined raw data are then fed into a IK-solver to output the BVH files to generate high-qualitysmoothed motions.
For training, we have designed single-agent and across-agent regimes, where the former trains the model onthe initial period of time of a motion and the let the model to predict the rest. After obtaining initial success,we extended the training to across-agents, i.e. non-overlapped data in training/testing from different people,for better model generalization. Now, we have obtained good numerical and visualization results on the IPM-level. We show some qualitative results below.

Figure 12. One example of prediction on the IPM level. Our method can accurately predict the motion aswell as the IPM parameters such as the rod length.

Figure 13. One example of prediction on the fully-body level. Left: ground-truth. Right: Prediction.
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1.5. Microscopic Crowd Behavior
Tests, demos, and validation efforts will be difficult to showcase on simplistic scenarios. By simplisticscenarios, we mean crowds of people simply standing in an open environment. The issue will be that suchscenarios, while possibly adequate for basic shockwave propagation demonstrations, will be very difficult tocompare against actual crowds, moving and gathering within, for instance, a festival.
The festival example is here quite important, as thus far, the data that was successfully captured as part of theproject only concerns this type of venue. Festivals, which are therefore our current target demonstrationenvironment, present two main properties: (1) they often consist of more than one performance stage and (2)the geometry of the stages themselves can vary greatly. As a consequence of these properties, a user intent onconfiguring such events will face the major issue of determining the simulated agents' destinations. This issomething that is entirely absent in an open environment, where the user can simply "pop" agents somewherein the middle, and then direct them towards a common goal in order to build up density. In the case of a festivalon the other hand, agents need to correctly spread around a stage, independently of its geometry.
This task of gathering around a stage is, in fact, not only harder than it appears, but also necessarily performedautomatically. The obvious, low effort means of achieving it, is to "pop" the agents in roughly equal amountsaround the stage, and then direct them to converge towards said stage, closest-distance style. It could bediscussed here, if such a method does or does not inject bias as to the final spatial distribution of the agents.But the main problem that can be observed here, is that such a configuration method breaks the moment theseagents are required to transition to another stage. Indeed, if agents are made to move to another stage, it willbe impossible to apply the same configuration strategy there, given that the agents already exist, and that theyare all in the same general location with respect to the second stage.
Unfortunately, this phenomenon of inter-stage movement is quite prevalent, as often festivals establishperformance schedules in such a way that the audience is expected to attend a performance in one location,while another location is being prepped between performers. Such a rolling schedule therefore allows forsmooth and wait-less transitions between performances. Such was the case at the Hellfest, where such an inter-stage movement was captured (see WP4). Given the constraints imposed on such a crowd movement (i.e.people already part of a dense crowd, moving towards another area which might require navigating aroundstage-delimiting barriers), we expect such a phenomenon to be difficult, possibly dangerous, and thereforenecessarily present in the validation simulations.
Given what we have already established about the impossibility to control, in the general case, the initiallocation of a crowd before its movement towards the stage, we have updated the decision process of ONH'ssimulated agents to automatically decide what their destination will be in such a situation, irrespectively oftheir origin.
As a result of this effort (see Figure 14), our agents are now able to process the environment around a stage insuch a way as to estimate for each possible direction (1) where they are likely to end up if they follow thisdirection (end position) and how close it will be to the stage (motivation), (2) how long they will have to travelin order to reach this end position (locomotion effort), and (3) how difficult it will be to navigate to this endposition (navigation effort among the flow of other, surrounding agents). Additionally, note that all theseestimations are made in anticipation, and therefore concern a future state of the crowd, made probable by itscurrent overall movement. Finally, this choice is never final and is continuously updated as the agents movearound the stage. As a result, our agents are now able to automatically spread around a stage, and their choicecan further be controlled by the user through manipulation of the cost function's parameters.
This last aspect will require careful calibration following data collected at the various Crowd Observatories.
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Figure 14. Quantities used for an agent’s decision process when deciding where to go around a stage.
Figure 14 shows a still from a simulation of a cross-shaped stage positioned at the Main Stage area of theHellfest (although several kinds of temporary stages have been used there over the years, this particular stagewas not in place at that location during the 2022 edition, we simply reused the 3D model of this festival sincewe already had it). In this simulation we made a flow of people (coming from North-East, where the entranceof the area is) gather around the stage using the automatic mechanism described earlier. As can be observed,the first agents to arrive prefer the areas on the same side of the stage (the larger amounts of agents on the leftof the Figure 15), whereas agents that arrive later will cross to the other side due to the amounts of agentsalready present at the stage (larger flow towards the right side of the Figure 15).



17

GA No. 899739 – CrowdDNA – H2020-FETOPEN-2018-2019-2020-01D2.1: Internal version of the simulator

PUBLIC RELEASE

Figure 15. Flow of agents arriving from the North-East and gathering around a cross-shaped stage. The firstarrived agents prefer to observe the performance from the same side of the stage (left). Agents arriving laterdecide to cross to the other side due to the crowd (right).

1.6. Balance Recovery Control

Figure 16. Experiment and simulation of balance recovery after a push from a pole.
1.6.1. Introduction

When standing still, humans rest on their two feet in the upright position. After an external perturbation likea push, they try to recover balance and avoid falling (see Figure 16): several motion strategies are known inhumans to achieve this [7]. On a flat ground without any possibility of grip, balance is achieved when thecenter of mass (CoM) lies within the limits of the support area (the convex hull defined by the feet contactpoints for an individual). However, under large perturbations, adjusting the shape of the support area byrepositioning the feet is required. This stepping strategy combines controlling feet position together with theCoM position to get the balance condition satisfied.
Our objective is to dynamically control the movement of a character to simulate balance recovery behaviorsafter external pushes by replicating the stepping strategy of humans. Our approach is to control the character’sjoints to place the projected CoM in the center of the support area, while the feet are re-positioned whennecessary to adjust the configuration of this zone according to the instantaneous movement of the CoM.
We propose a physics-based simulation that implements this control strategy on a character. We adapt a genericwalking model, enhancing its capabilities to handle external pushes and to react accordingly. Our approach is
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supported by experiments performed on balance recovery behaviors in humans. This study highlighted therole of the feet in balance recovery and supported our paper in two aspects. Not only it provided us withgeneralized equations describing the feet behavior, it was also used to fine tune the overall model responsewith regard to experimental data. In comparison with other learning or kinematics-based approaches that relyon example motions, our approach is generic and can consider new perturbations or new morphologies withoutneed for additional data.
This paper has two main contributions. The first contribution introduces a balance assessment method able todetect the need to take a step to maintain this balance after a push. The second contribution introduces a novelfoot positioning strategy leading to a balanced state. These two contributions are combined with state-of-the-art physics-based human simulation, then tuned and validated using the same experimental data that inspiredthe control of the character.
The result is a simulator able to reproduce the behavior of a human being pushed accurately, for any pushstrength or duration.

1.6.2. Overview
Figure 17 depicts the method used to simulate balance recovery, with a visual representation of the characterbeing pushed and a flowchart of the simulation iteration. We follow the SI metric system for forces, distancesand velocities. The legend of the figure shows the correspondence between the colors of the flowchart boxesand the main components of the proposed method: the Locomotion System which trigger steps to recoverbalance, the control of the Foot Trajectory after steps are triggered, and finally the FullBody Control of theCenter of Mass (CoM) position. Following paragraphs provide details about each of these components, startingwith the controlled character itself.
Character. The character of the simulation is a poly-articulated kinematic chain of cuboid limbs, except for acapsule head. A total of 14 limbs are attached at 11 joints. Of all the joints, 4 hold 1 Degree of Freedom (DoF)while the others have 3, amounting to a total of 25 DoFs. The size and mass of the limbs in the body followWinter’s [34] table, scaled with the character’s total height and weight.
Joint PD controller. Actuation of the motion for the character is mainly done through traditional ProportionalDerivative (PD) controllers. For every joint, a unique set of Kp and Kd gains is provided handling all the DoFs.As seen in Figure 17 close-up 1, desired and current angles 𝜃𝑑 and 𝜃 are compared in a local limb alignedbasis. Taking also into account the angle velocity 𝜃𝑑 and 𝜃, the PD controller outputs a torque 𝜏 actuatingthe joint to the goal angle, according to the classic PD controller equation (1).

(1)
Simulation iteration. At the start of the simulation iteration, the current state of the character is evaluated bythe Locomotion System (Section 1.6.4) in red. This process relies on analyzing the Center of Mass (𝐶𝑜𝑀),the Expected Center of Mass (𝑋𝐶𝑜𝑀) and the Base of Support (𝐵𝑜𝑆). If the two feet are planted (i.e., thecharacter is not walking yet), balance is assessed. If necessary, a step is triggered putting the character in thewalking state.
Depending on this analysis, a step might be necessary, shown by the Foot Trajectory component displayed inblue in Figure 17. This entails first computing a goal position coordinates for the swinging foot on the ground
𝑋𝑍plane, here known as𝑋𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑋𝐷) and𝑍𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑍𝐷), that will lead the character to balance.To reach this goal, a trajectory is computed to be followed during the next simulation iterations. An overallmotion is generated for the legs using inverse kinematics, following the trajectory for the swinging foot. Everyjoint in the body have default goals, some of which are overwritten by the inverse kinematics process whenwalking.
Those goal angles are provided to the PD controllers, producing a torque 𝜏 at every joint of the body. All theforces applied in our method by the Full-body Control (Section 1.6.6) are shown in green. To support themotion of the body, the Jacobian Transpose method is used to compute torques for the three type of forces,
𝐹𝐶𝑜𝑀,𝐹𝑉𝐸𝐿 and𝐹𝐺𝑅𝐴𝑉. An example is provided in Figure 17 close-up 2, where the force of limb
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𝑖, 𝐹𝐺𝑅𝐴𝑉𝑖 , is applied through two torques 𝜏1and 𝜏2 using the elbow and shoulder joints, according totheir Jacobian matrix in relation to each limb’s Center of Mass.
All those torques are then merged and integrated in the physics engine (using the Dantzig-Wolfe [9]decomposition solver applied to Mixed Linear Complementary Problems), for a new iteration to begin. Thisprocess can be disrupted by an external force𝐹𝑃𝑈𝑆𝐻, directly applied to the body during the integration.

Figure 17. Overview of our balance recovery method.
1.6.3. Feet Motion Strategy

The core of this work relies on the simple premise that humans, after receiving a push, may need to take stepsto recover balance. At the core of this recovery is the contact between the character and the ground: their feet.This section details the two parts of the model involving the placement of the feet, respectively the LocomotionSystem and the Foot Trajectory.
1.6.4. Locomotion System

The first objective of the simulation is to accurately detect whether it is necessary or not for the character totake a step. This section introduces how the current state of the simulation is analyzed, leading if necessary toa walking state. It also explains the state machine followed by the model, to alternate stepping between legs torecover balance.
Balance assessment using Time to Base of Support. The purpose of this work is for the character to recoverand keep balance, with or without locomotion. As such, the first notion to be clarified is the definition ofbalance: what factual observation can be made to determine whether a character is balanced or not. For thispurpose, this work relies on experimental data of people being pushed.
More specifically, the step triggering condition determined in the following work, is implemented in ourmodel. This method relies on the analysis of the future position of the center of mass XCoM [14], and is largelyinspired by the following notion of Margin of Stability (MoS)[26], computed with the following equations:

Here, 𝑥𝐶𝑜𝑀 represents the CoM position,𝑔 is the gravity constant, 𝑙 the length of the legs and 𝑢𝑚𝑎𝑥theclosest intersection with the BoS in the direction of the XCoM from the CoM. Figure 18 illustrates these
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notions and the relationships between them. Those concepts lead to the estimation of the Time to BoS (TtBoS)using the Distance to BoS (DtBoS), in the following equations:

The DtBoSrepresents the distance between the CoMand the closest BoS boundary in the CoM velocitydirection, while theTtBoS is the time for the CoM to cover that distance. Based on experimental data, athreshold T is defined for the Time to BoS, under which the character will be considered unbalanced in thefuture, without possibility to recover without taking a step.

Figure 18. Step detection process when receiving a push (in green).

Leg switch state machine. Using the previously defined threshold T, the simulation is now able to detectwhether the character should be stepping or not. This allows us to define a simple state machine which is thelocomotion model of the character, illustrated in Figure 19.

The base state of the character is the Standing (S0) state. In this state, the rigidity of the character is enough tokeep its CoM in the BoS, and steps are not needed. If the threshold T is crossed, a step is initiated. This changesthe state of the character as Walking with the right (S1) or left leg (S2) depending on the direction the CoM ismoving toward.
While stepping, the characters converge toward a balanced state. However, if at the end of the step when thefeet are both at their intended position, the character is still considered as unbalanced (the TtBoS is still under

Figure 19. Locomotion state machine.
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T), then another step is initiated. The swinging leg is switched, and the process is repeated until the characteris considered as balanced at the end of a step. Thus, it simply returns to the Standing state, where internal forcesare enough to keep balance.
1.6.5. Foot trajectory

Computation of the foot trajectory. When the character enters a Walking state, first are computed the end goalposition’s coordinates,𝑋𝐷 and𝑍𝐷, for the foot of the current swinging leg. Not only must the end positionbe computed, but the StepTime the step takes to be completed is also crucial for swift yet cohesive movement.
In order to calculate those key factors, equations derived from experimental data are being used. Both the footend position and stepping time have been found to be tightly linked to the velocity of the CoM. Similar to thethreshold for the time to BoS, those parts of the model are anchored in observation of experimental data whichsupports the simulation, leading to the following equations and parameters (see Table 1):

Table 1. Experimental Parameters.
Name 𝑎1 𝑎2 𝑏2
Value 0.581 0.185 0.272

Figure 20. Step Computation in 2D and 3D.
In order to reach the goal position (𝑋𝐷,𝑍𝐷) in StepTime seconds, a trajectory needs to be established thatwill lead the foot to the next position, as seen in Figure 20. The problem can be divided in two parts : theprojected trajectory of the foot on the ground over time, and the foot’s height over time. The projected positioncan simply be computed by linear interpolation between the original and end position, seen on the left of Figure20. For the height, the model approximates it using a spline proportional to the step distance, resulting in a 3Dtrajectory like the right part of Figure 20.
Taking into account the planned StepTime, this results in a trajectory that can be followed over time for thestepping foot. At every simulation iteration, the goal position of the stepping foot follows the trajectoryaccording to the current elapsed time since the beginning of the step, leading to the goal (𝑋𝐷,𝑍𝐷) positionin StepTime seconds.
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Figure 21. Two-step Inverse Kinematics
Swinging leg inverse kinematics. By default, each joint in the character’s body has a target angle of 0 for everyDoF while being subjected to gravity. When a step is underway, those goal angles are overwritten for the lowerbody to be in the right position. Those angles are computed at every simulation iteration when in the Walkingstate, following the trajectory previously established.
The angles are calculated using the Cycling Coordinate Descent (CCD) algorithm, as seen in Figure 21. Thefirst step is in the coronal plane, to compute the rotation around the 𝑋 axis 𝜃𝑠𝑡𝑟𝑖𝑑𝑒 which relies on thesingle DoF of the knee to simplify the inverse kinematics to a plane. The goal in blue follows along thetrajectory, represented by the dashed line. This is shown in the second part, where by knowing the length ofthe leg’s limbs and the position of the goal, the position of the knee can be deduced and the angles 𝜃ℎ𝑖𝑝 and
𝜃𝑘𝑛𝑒𝑒 are calculated.
Standing leg inverse kinematics. To support the stepping motion, the standing leg must contribute to thebalance. The goal position of the CoM is estimated as being between the final position of the two feet whenthey are projected onto the ground. The standing leg is given goal angles with the foot not moving and theCoM in the correct position, using the same CCD method but reversed (with the end effector now being thehips).

1.6.6. Full-body Control
Across the whole body, movement is at this point generated by the joints’ PD controllers provided with goalangles. Those goal angles are at default 0. As such, the overall body’s angles only stem from the weight ofgravity on the limbs counteracted by the PD controllers. Down the waist, angles are redefined when stepping.This however leaves the rest of the body in its default state, which is both inefficient and incorrect. Whenpushed, every part of the body is involved in push recovery albeit at different scales. This section covers thecomputation of the other applied torques across the whole body.
Set of applied torques. A total of four different types of torques can be applied in the simulation. The first isfrom the PD controllers, producing torques from goal angles. The other three are gravity compensation,velocity compensation and CoMdriving, computed using jacobian transpose. Gravity compensationcompensates the constant effort needed to resist gravity, to lower the strain on the PD controllers for finercontrol. Velocity compensation’s goal is to involve the whole body to counteract the push by convergingtoward zero CoM velocity. Finally, CoM driving supports the legs’ PD controller in their stepping motion bypushing the ground-projected CoM toward the middle of the feet.
Torque computation. The method used in order to compute the torques is the jacobian transpose, a classiccontrol method in robotics [5]. Figure 22 illustrates the application of a force 𝐹𝐺𝑅𝐴𝑉𝑖 at the position
𝐶𝑜𝑀𝑖 through two torques 𝜏1 and 𝜏2, one for the lower arm and one for the upper arm. To compute one ofthose torques, the first step is to compute for the corresponding limb the jacobian transpose of its joint inrelation to the position 𝐶𝑜𝑀𝑖 with:
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Figure 22. The Jacobian forces applied.
Transposing this limb’s jacobian matrix, a torque can be computed for the corresponding limb’s joint that willapply the equivalent of a force F (𝐹𝐺𝑅𝐴𝑉𝑖) at the position𝐶𝑜𝑀𝑖 using:

The implementation of this process and the relevant forces values to add to the system (namely the followinggravity and velocity compensation) are thoroughly explained in the paper ’Generalized Biped WalkingControl’ [8], which is the main inspiration of this work.
Gravity compensation. The first torques applied are gravity compensation. A set of forces is computed, onefor each limb of the upper body. The position of force exertion is the CoM of the limb, with the force followingthe equation:

For each force in this set, the Jacobian transpose process is repeated. The joints between the correspondinglimb and the hips have a torque computed. As such, the shoulder joint not only compensates the gravity of theupper arm, but also the lower arm as this joint influence both limbs.
Velocity compensation. The next force applied is velocity compensation, at the CoM of the character, with thecorresponding equation:

𝑎𝑉𝐸𝐿 is a dimensionless tuning parameter, to regulate the intensity of the resulting torques. This force isonly applied once at the CoM, however torques are computed for every joint between the standing foot andthe head.
CoM driving. As an addition to the previous set of forces, another force called the CoM driving contributes tobalance. It is applied the same way as velocity compensation, from the standing foot to the head, and only onceat the CoMof the character. It is calculated using:

𝑎𝐶𝑜𝑀 is another dimensionless tuning parameter, once again regulating the final torques values. It is amixture of the two previous forces: it supports the PD controllers like the gravity compensation and involvesthe whole body like the velocity compensation.
Force purpose and equilibrium. The three forces added to the system are expressed the same way as the PDcontrollers : through torques at joints of the body. This means that at each joint, multiple torques might besummed to get the final exerted torque. In order for this summation to work, each torque value must becarefully tuned in order to ensure a balanced contribution of controls, through gains (𝐾𝑝, 𝐾𝑑) or tuningparameters (𝑎𝑉𝐸𝐿,𝑎𝐶𝑜𝑀).
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1.6.7. Balance Recovery Results
After the optimisation of the simulation, several aspects of the resulting movement have been explored. First,the balance recovery capacities of the model with regard to the external pushes’ intensities were investigated.Second, the torques generated by the model were investigated in terms of intensity and compared to humanstrength generation capabilities reported in the literature. Third, the generated motion was compared toreference values obtained from the experimental data and processed with the CusToM motion analysis library[23]. Specifically, step triggering, CoM trajectories and joint angles trajectories were compared in terms ofamplitude and shape. The simulation runs in real time between 100Hz and 200Hz. Each frame represents 0.005seconds to fit the experimental data refresh rate, with 200 solver iterations per frame.

1.6.7.1. Evaluation of balance recovery
The first goal of this simulation is to mimic the balance recovery behavior, and more specifically how humansfollow stepping strategies when necessary. As such, the first qualitative metric explored in Figure 23 is theability of the character to recover balance after receiving pushes of varying strength and duration. By default,we set our character to an average height and weight (1.70m and 70kg), pushed from a perpendicular angle tothe back. A push is done at every 20N (between 0 and 300 Newtons) and 0.2s (between 0 and 2 seconds), onlyonce due to the deterministic nature of the simulation. Note that this range of impulse goes beyond theexperimental study we based our work on, as shown in Figure 23. The blue and red areas correspond tocomplete success or failures. Mixed responses designate the area in which failed test appeared for lowerintensity pushes than successes.

1.6.7.2. Torque value
The following investigation aims at checking whether the generated torques values are within the range ofhuman torques. The measures are made for the lower body joints, and compared with an empirical study [3].Figure 24 illustrates our results. For each type of torque, the maximum torque (up axis) observed in humansfor an angle (right axis) and an angle velocity (bottom axis) value is represented as a surface. Each colorcorresponds to the torque measured over the duration of a low (green), medium (blue) and high (red) impulsepush. The surface represents the torque generation capacities for the corresponding angle and angle velocityvalues reported from Anderson et al [3].

Figure 23. Balance recovery for varied impulse,with the range of intensity and duration coveredexperimentally delimited.
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Hip extension Hip flexion

Plantar flexion Dorsiflexion

Knee extension Knee flexion
Figure 24. Simulation torque comparison.

1.6.7.3. Data comparison
In this subsection, the simulation results are confronted and compared to the experimental data computed frommeasured human pushes.
Step triggering
The confusion matrix Table 2 of the simulated experiment pushes allows an evaluation of the step triggeringcondition used in the model. For every push perpendicular to the back of the dataset, the same push wasrecreated in the simulator. The test is done on whether the simulation needs to take a step or not for the samepushes than the original data. Positive and Negatives correspond to the simulation needing a step, while Trueand False come from the experimental data needing to step. The resulting values are a sensitivity of 0.88, aprecision of 0.81, and an overall accuracy of 0.74.
Table 2. Step triggering confusion matrix of 251 pushes.

True False
Positive 163 38
Negative 22 23
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CoM trajectory
Figure 25 (left) showcases a study of the CoM trajectory over time. Every push at a perpendicular angle of theback in the original dataset (blue) is recreated in the simulation (red). Only stepping pushes are shown in thisfigure. The trajectory is the projected position of the CoMon the ground over time (normalized by height andweight for the data). Every push of the experiment is recreated in the simulation, with the color gradientcorresponding to the intensity of the same push for both set of trajectories.
The final positions in the direction of the push after stepping (by impulse) are displayed in Figure 25 (right),for the experimental data (blue) and simulation (red). All pushes perpendicular to the back are tested, regardlessof steps in the experimental data.

Figure 25. Final positions in the direction of the push after stepping.
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Conclusion
In this deliverable, we have described the different components of the first version of the CrowdDNA crowdsimulator, which was developed during Period 1 and Period 2 of the project. Our proposed solution is notlimited to just modeling the macroscopic behavior of a crowd, but it also models many micro-scale effectssuch as 3D volumetric characters, close character interaction, balance control, as well as improvements at themacroscopic behavior based on social and contextual cues.
This new simulator provides many key functionalities that will be essential for the upcoming parts of theproject. With the ability to model both macro and micro, we will be able to train models for macro-to-microcrowd analysis that will enable an unprecedented control and management of dense crowds in real-time.Leveraging the proposed model, we will generate a new richly annotated dataset of 3D crowds, with micro-level annotations such as inter-human contact forces, limb-level actions, and individual behavior. This newtype of data will enable the training of machine learning models for crowd analysis and management, plannedfor the period 3 of the project. In the final part of the project, the trained models will be deployed and tested toa range of crowd observatories to validate the capabilities of solutions proposed along the project.
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